(The Number System)

I can understand irrational numbers and approximate them by rational numbers.

- 8.NS.A.1 I can show that every number has a decimal.
- 8.NS.A.1 I can change every repeating decimal into a rational number.
- 8.NS.A.1 I can show that the decimal expansion eventually repeats for rational numbers.
- 8.NS.A.1 I can change a repeating decimal expansion into a rational number.
- 8.NS.A.2 I can use rational approximations of irrational numbers to compare the size of irrational numbers, locate and plot them approximately on a number line diagram, and then estimate the value of the expressions.
- 8.NS.A.2 I can use estimate values to compare two or more irrational numbers.

(Expressions & Equations)

I can work with radicals and integer exponents.

8.EE.A.1 I can use the properties of integer exponents to
simplify expressions.
8.EE.A.2 I can use square and cube root symbols to represent
solutions to equations of the form $x^2 = p$ and $x^3 = p$, where p is a
positive rational number.
8.EE.A.2 I can evaluate the square root of a perfect square and
the cube root of a perfect cube.
8.EE.A.2 I can understand that the square root of 2 is irrational.
8.EE.A.3 I can write an estimation of a large quantity by
expressing it as the product of a single-digit number and a
positive power of ten.
8.EE.A.3 I can write an estimation of a very small quantity by
expressing it as the product of a single-digit number and a
negative power of ten.
8.EE.A.3 I can compare quantities written as the product of a
single-digit number and a power of ten.
8.EE.A.4 I can solve operations $(+,-,x,\div)$ with two numbers
expressed in scientific notation, including problems that contain
both decimals and scientific notation.
8.EE.A.4 I can use scientific notation and choose units of
appropriate size for very large or very small measurements.
8.EE.A.4 I can interpret scientific notation that has been
generated by technology.

(Expressions & Equations)

I can understand the connections between proportional relationships, lines and linear equations.

8.EE.B.5 I can graph proportional relationships, interpreting the unit rate as the slope of the graph.
8.EE.B.5 I can use a table, an equation or graph to decide the unit rate of a proportional relationship.
8.EE.B.5 I can use the unit rate of a graphed proportional unit rate to compare different proportional relationships.
8.EE.B.6 I can use similar triangles to explain why the slope m is the same between two points on a non-vertical line in a coordinate plane.
8.EE.B.6 I can explain that an equation in the form of $y=mx$ will represent the graph of a proportional relationship with a slope of m and y -intercept of 0.
8.EE.B.6 I can explain that an equation in the form of $y=mx+b$ represents the graph of a linear relationship with a slope of m and a y -intercept of b .

(Expressions & Equations)

I can analyze and solve linear equations and pairs of simultaneous linear equations.

8.EE.C.7 I can solve linear equations in one variable.
8.EE.C.7A I can simplify a linear equation by using the
distributive property and combining like terms.
8.EE.C.7A I can give examples of linear equations with one
solution, infinitely many solutions or no solutions.
8.EE.C.7B I can solve linear equations with rational number
coefficients, including equations when solutions require expanding
expressions using the distributive property and combining like
terms.
8.EE.C.8 I can analyze and solve pairs of simultaneous linear
equations.
8.EE.C.8A I can explain solutions to a system of two linear
equations in two variables as the point of intersection of their
graph.
8.EE.C.8A I can describe the point of intersection between two
o.LL.c.on I can describe the point of intersection between two

(Expressions & Equations)
□ 8.EE.C.8B I can solve a system of two linear equations in two unknowns algebraically.
□ 8.EE.C.8B I can identify cases in which a system of two equations in two unknowns has no solution or an infinite number of solutions.
□ 8.EE.C.8B I can solve simple cases of systems of two linear equations in two variables by inspection.
□ 8.EE.C.8C I can solve real-world and mathematical problems
leading to two linear equations in two variables.

(Functions)

Ι	can	und	erstai	nd,	interpret	and	compare	functions.
---	-----	-----	--------	-----	-----------	-----	---------	------------

8.F.A.1 I can define a function as a rule, where for each input
there is exactly one output.
8.F.A.1 I can show the relationship between inputs and outputs of
a function by graphing them as ordered pairs on a coordinate grid.
8.F.A.2 I can determine the properties of a function given the
inputs and outputs in a table.
8.F.A.2 I can compare the properties of two functions that are
represented differently (equations, tables, graphs or given
verbally).
8.F.A.3 I can explain why the equation $y=mx+b$ represents a
linear function and then find the slope and y-intercept in relation
to the function.
8.F.A.3 I can give examples of relationships and create a table of
values that can be defined as a non-linear function.

(Functions)

I	can	use	functions	to	show	relations	hips	between	quantities.
---	-----	-----	-----------	----	------	-----------	------	---------	-------------

8.F.B.4 I can create a function to model a linear relationship between two quantities.
8.F.B.4 I can determine the rate of change and initial value of the function from decryption of the relationship or two (x,y) values, including reading a table or graph.
8.F.B.4 I can find the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.
8.F.B.5 I can match the graph of a function to a given situation.
8.F.B.5 I can sketch a graph that exhibits the qualitative features of a function that has been described verbally.

(Geometry)

I can show I understand congruence and similarity using physical models, transparencies or geometry software.

	8.G.A.1 I can verify by measuring and comparing the properties of rotated, reflected or translated geometric figures.
	8.G.A.1A I can verify that corresponding lines and line segments
	remain the same length.
	8.G.A.1B I can verify that corresponding angles have the same measure.
	8.G.A.1C I can verify that corresponding parallel lines remain parallel.
	8.G.A.2 I can explain that a two-dimensional figure is congruent
	to another if the second figure can be made from the first by rotations, reflections and translations.
_	·
Ц	8.G.A.2 I can describe a sequence of transformations that shows
	the congruence between two figures.
	8.G.A.3 I can describe the changes to the x - and y - coordinates
	of a figure after either dilation, translation, rotation or reflection.
	8.G.A.4 I can explain how transformation can be used to prove
	that two figures are similar.
	8.G.A.4 I can describe a sequence of transformations that either
	prove or disprove that two figures are similar.

(Geometry)

I can understand and use the Pythagorean Theorem.

8.G.A.5 I can informally prove that the sum of any triangle's
interior angles will be the same measure as a straight angle (180
degrees).
8.G.A.5 I can informally prove that the sum of any polygon's
exterior angles will be 360 degrees.
8.G.A.5 I can estimate the relationships and measurements of
the angles created when two parallel lines are cut by a
transversal.
8.G.B.6 I can use the Pythagorean Theorem to determine if a
given triangle is a right triangle.
8.G.B.6 I can use algebraic reasoning to relate a visual model to
the Pythagorean Theorem.
8.G.B.7 I can draw a diagram and use the Pythagorean Theorem
to solve real-world problems involving right triangles.
8.G.B.7 I can draw a diagram to find right triangles in a three-
dimensional figure and use the Pythagorean Theorem to calculate
various dimensions.
8.G.B.7 I can apply the Pythagorean Theorem to find an unknown
side length of a right triangle.
8.G.B.8 I can apply the Pythagorean Theorem to find the
distance between two points in a coordinate system.

(Geometry)

I can	solve	real-w	orld ar	d mat	thematical	problems	involving	the
volum	es of	cones,	cylinde	rs an	d spheres.			

8.G.C.9 I can state and apply the formulas for the volumes of
cones, cylinders and spheres.
8.G.C.9 I can solve real world problems involving the volumes of
cones, cylinders and spheres.

(Statistics & Probability)

I can investigate patterns of association in data that has two variables (bivariate data).

8.5P.A.1 I can plot ordered pairs on a coordinate grid
representing the relationship between two data sets.
8.SP.A.1 I can describe patterns such as clustering, outliers,
positive or negative association, linear association and nonlinear
association.
$8.5P.A.2\;\;I$ can recognize if the data plotted on a scatter plot has
a linear association.
8.5P.A.2 I can draw a straight line to approximate the linear
relationship between the plotted points of two data sets.
8.5P.A.3 I can determine the equation of a trend line that
approximates the linear relationships between the plotted points
of two data sets.
8.5P.A.3 I can interpret the y-intercept and slope of an equation
based on collected data.
8.5P.A.3 I can use the equation of a trend line to summarize the
given data and make predictions about additional data points.
8.SP.A.4 I can create and explain a two-way table to record the
frequencies of bivariate categorical values.
8.5P.A.4 I can determine the relative frequencies for rows
and/or columns of a two-way table.
8.5P.A.4 I can use relative frequencies and the context of a
problem to describe possible associations between two sets of
data.